UNIT - II

Agenda

Components Types
Difference Between TH & SMD
SMD Package
SMD Components value Identification
IC Package Types
PCB Track Angle
Ohm Resistor

@ www.enthutech.in

Components Types

Aspect	Through-Hole (TH)	Surfac
Mounting Technique	Leads are inserted into holes drilled in the PCB and soldered to pads on the opposite side.	Compon onto the
Component Size	Larger and bulkier; requires more space on the PCB.	Smaller a high-den

e-Mount Device (SMD)

PCB surface using solder.

and compact; ideal for asity designs.

the www.enthutech.in

Components Types

Assembly Process	Requires manual soldering or wave soldering; slower and labor-intensive.		
Mechanical Strength	Strong mechanical bond; ideal for applications under mechanical stress.	N sut	
ApplicationsUsed in aerospace, automotive, industrial, and prototyping applications.		Cc like	

ssembled using automated nachines, enabling faster production.

Mechanically weaker but fficient for most consumer electronics.

ommon in compact devices e smartphones, laptops, and wearables.

@ www.enthutech.in

SMD Package Types

Package	Inches L x W	mm	Power
0201	0.024" x 0.012"	0.6mm x 0.3mm	0.05W (50mW)
0402	0.04" x 0.02"	1.0mm x 0.8mm	0.063W (63mW)
0603	0.063" x 0.031"	1.6mm x 0.8mm	0.1W
0805	0.08" x 0.05"	2.0mm x 1.25mm	0.125W
1206	0.126" x 0.063"	3.2mm x 1.6mm	0.25W
1210	0.12" x 0.10"	3.2mm x 2.6mm	0.5W
2020	0.20" x 0.20"	5.08mm x 5.08mm	1W

R www.enthutech.in

SMD Resister

3 Digit Value

PG - BG

 $25 \times 10^{0} = 25 \times 1 = 25 \Omega$

DEG

72 x 10^1 = 72 x 10 = 720 Ω

 $10 \times 10^{2} = 10 \times 100 = 1k\Omega$

<u>SMD</u> <u>Reshttps://www.electricaltechnology.org/2013/07/how-to-</u> <u>calculate-or-find-value-of-smd.htmlistor Value Calculator</u>

4 Digit Value

$720 \times 10^{1} = 720 \times 10 = 7.2 k\Omega$

$250 \times 10^{0} = 250 \times 1 = 250 \Omega$

www.enthutech.in

SMD CAPACITOR

Aluminium Capacitor

TANTALUM CAPACITOR

0,00

#enthutech®

🖂 eas@enthutech.in

R www.enthutech.in

Aluminum Capacitor

22uf j = Voltage HA = Series

47000 pf 47nf (/1000) 0.47uf #enthutech®

onth	nute	ငh®
CIICI	iute	CII

🖂 eas@enthutech.in 🛛 🌐 www.enthutech.in

TANTALUM CAPACITOR

Capacitance Value in pF

- Rated Voltage Code A = 10V
- ID Code

Henthutech

@ www.enthutech.in

SMD INductor

1.0 = 1 u H

R www.enthutech.in

Dual In Package (DIP)

Quad Flat Package (QFP)

ATTALLE

Small Outline Package (SOP)

Quad Flat No-Leads (QFN)

enthutech

🖂 eas@enthutech.in

@ www.enthutech.in

Small Outline Transistor (SOT-23)

Small Outline Transistor (SOT-223)

enthutech

🖂 eas@enthutech.in

R www.enthutech.in

PCB TRACK ANGLE

In Printed Circuit Board (PCB) design, track angle rotation refers to the orientation and angular placement of copper traces that connect components on the board. Properly managing these angles is crucial for both electrical performance and manufacturability.

#enthutech®

@ www.enthutech.in

PCB TRACK ANGLE

45-Degree Routing

Using 45° angles for track rotation is the preferred industry standard as it reduces abrupt direction changes.

Benefits of 45° angles:

- Improved signal integrity by reducing reflections.
- Easier etching during manufacturing.
- Enhanced electromagnetic compatibility (EMC).

🖂 eas@enthutech.in

www.enthutech.in

PCB TRACK ANGLE

Avoiding 90-Degree Angles

While 90° angles are still used, they are typically avoided in high-speed designs because:

- **Issues:** Sharp corners can cause Integrity • Signal discontinuities, leading to reflections and signal degradation.
- Manufacturing Defects: Acid traps may form in the sharp corners, leading to under-etching.
- Thermal Management Problems: Heat dissipation in sharp corners may be less effective.

impedance

O OHM RESISTOR

PCB.

holes.

Replacing jumpers: Zero ohm resistors can replace jumpers to enable connections on a

Routing single layer boards: Zero ohm resistors can route a single layer board without making

@ www.enthutech.in

O OHM RESISTOR

🖂 eas@enthutech.in 🏾 🌐 www.enthutech.in

R www.enthutech.in